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Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions
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Systems of model planar, nonconvex, hard-body “molecules” of fivefold and sevenfold symmetry axes are
studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules,
referred to as pentamefBeptamers are composed of fivéseven identical hard disks “atoms” with centers
forming regular pentagondeptagonsof sides equal to the disk diameter. The elastic compliances of defect-
free solid phases are computed by analysis of strain fluctuations and the reféegndibrium) state is
determined within the same run in which the elastic properties are computed. Results obtained by using
pseudorandom number generators based on the idea proposed by Holian and co{wialierst al, Phys.

Rev. E50, 1607 (1994] are in good agreement with the results generated by DRANDA48. It is shown that
singular behavior of the elastic constants near close packing is in agreement with the free volume approxima-
tion; the coefficients of the leading singularities are estimated. The simulations prove that the highest density
structures of heptamefs which the molecules cannot rotai@re auxetic, i.e., show negative Poisson ratios.
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[. INTRODUCTION properties and/or phenomena, some of which may find prac-
tical applications.

Hard-core systems have been extensively studied in the The planar hard cyclic pentamer and the planar hard cy-
literature to model various structures of mattér34). The  clic heptamelsee Fig. 1, further referred to as the pentamer
interest in the systems comes from the fact that they ca@nd the heptamer, are nonconvex, star-shgd@d, hard-
reproduce short range molecular correlations and exclude@ody model molecules of fivefold and sevenfold symmetry
volume effects. The hard-core systems are also interestin@X€S. respectively. These are the lowest symmetry axes for-
from the point of view of the fundamental requirements ofbiddenin pe_rlodlc crystalline phases. Theoretical and experi-
the thermodynamics since, for obvious reasons, they canngiental studies of the pentamefS2-57 and the hepta-

collapse at any pressure. It is worth to add that the freéners[55,57,58 showed that various solid phases can exist in

energy of systems interacting through purely hard potential ';,h)e(:tse fsylstﬁg:s‘.Wet ar\r/10|db us;ng thefvtvr? rdWcrl)Il sktﬁl \'Ar/'nth? cl:)?nr_n
infinite when overlaps occur and zero otherwise, further re-oxt 0! planar systems because of the we own probiems

. with the translational order in two dimensiori§9,60.)
ferred to ashard-bodysystems, is r_educed o the producF of Some thermodynamic and structural properties of these
the temperature and the entrojlt.is so because all avail-

i . hases have been determined by Monte Carlo simulations
able configurations have the same, usually assumed to %3—58- In particular, preliminary studies of some dense

Zero, potential energyln consequence, the comple’Fe €QqUa-stryctures of the heptamers have indicated that they exhibit
tion of state of the hard-body systems can be obtained frorﬁnomalous(negative) Poisson ratio§55,58.
a single isotherm. The Poisson ratio is a quantity characterizing deforma-
Although the most common application of the hard-bodytjons of elastic media. It can be determined by introducing an
systems concerns the theory of fluids, they can also play thgfinitesimal change of the stress along a certain direction
role of very simple(purely geometric models of solids. In  (whereas other components of the stress tensor are kept
particular, they may help to understand the influence of théixed) and measuring the strain along this direction and a
molecular shape on the elastic propertiegeftremely an-  direction perpendicular to it is defined as the negative ratio
harmonic solids. Determination of elastic properties of hardof the transverse strain change to the longitudinal strain
body solids is, however, a nontrivial task because of nonanazhange and, in general, it depends on both the directions.
lytic character of their interactions. In the past, the elastic The Poisson ratios of typical materials are non-negative,
properties of hard-body solid systems have been determined
for convexbodies only: for hard spher¢85—44, for hard
disks[45-50, and for hard ellipsoidg51]. Since most of the
real molecules are neither spherical nor ellipsoidal, calcula- \J (0]
tions of elastic properties of other systems consisting of an-
isotropic hard bodies are of interest. In particular, studies of
systems containing model molecules of nonconvex shapes,
which differ qualitatively from convex ones, may reveal new

o

FIG. 1. Geometry of(a) the pentamer andb) the heptamer
*Electronic address: kww@man.poznan.pl “molecules.”
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i.e., the materials contraéexpand transversely when pulled present method, one avoids differentiating the interaction po-
(pushed longitudinally. It should be stressed, however, thattential as well as deriving and implementing to the program
negative Poisson ratio is allowed by the stability conditionsthe microscopic formulas for the pressuioe the elastic con-
even in the case of isotropic systefB4]. Moreover, systems stant3. One can notice that the same is true for a method
of negative Poisson ratio are not just theoretical curiositie$44,50 which is based on numerical differentiation of the
[62,63 but can have a lot of interesting applications. Suchfree energy with respect to the strafihe free energy can be
systems have been manufactured more than a decade agotained, e.g., by the Frenkel-Ladd metHdd,50,111.) In

[64] and since that time they have been a subject of veryhe latter method, however, various deformations around the
intensive studie§65—99. Systems of negative Poisson ratio reference state have to be considered, and the free energy has
have been coineduxeticsby Evans[74]. For anisotropic to be calculated at each of the deformations. In general, other
systems showing the negative Poisson ratio in certain direanethods require also determination of the reference state in
tions only, the namaxial auxeticshas been introducd@®9]. advance, i.e., before the run in which the data necessary for

The main aim of this paper is to determine elastic prop-the determination of the elastic constants are obtained.
erties of the defect-free, dense solid structures of pentamers Describing the applied simulation technique requires re-
and heptamersi.e., in absence of vacancies, dislocations,calling some general definitions concerning elasticity of sol-
disclinations, etg.by applying the strain-fluctuation method ids. This is done in the following section. Statistical me-
[45,57,100-10Band to test the convergence of this methodchanical basis of the simulation technique is sketched briefly
for elastically anisotropic phases. The present study resolveSec. Il B. In Sec. Il C, the way in which one avoids calculat-
the problem of auxeticity of the most dense structures of théng the strain components during the simulatiotad,
heptamers. It extends also the amount of available data comence, the necessity to know the reference state in advance
cerning systems consisting of anisotropic model moleculess shown. In Sec. Il D, the remaining details of the performed
interacting through highly anharmonic potentials. Such dataimulations are presented.
are useful to construct various theoretical approximations
and to test them.

The structure of the paper is as follows. In Sec. I, some }
basic facts concerning the elasticity theory are recalled and The free energy chang®F . corresponding to a ther-
the simulation method is presented. In Sec. IlI, we brieﬂymodynammally reversible elastic deforma_tlon of a sol]d un-
describe the dense structures of the pentamers and heptam@g§ an external stresg; can be expanded in power series of
whose elastic properties are studied in the present paper. me components of the strain tensor. The second-order expan-
Sec. IV, the obtained results concerning the elastic propertie¥on readg112]

A. Elasticity of solids under external pressure

of the studied structures are discussed and compared with the D 1P
free volume theory. The last section contains the summary ) _ e+ o
and conclusions. AFgjastic/ Vret ; Tij €ij 2 % Cljk|8Ij8k|! 1

where V,¢; is the volume of the reference stat®,is the
Il. THE SIMULATION METHOD system dimensionalitg;j, are the components of the tensor

Various methods have been proposed in the literature fopf elastic constantgnvariant with respect to the following
simulations of elastic properties of model systemsreplacements of the indices:j, k1, i,j<k,l),
[38,39,43,45,47,48,63,81,100-109he computations de-
scribed in the present work were performed by the constant I . o
pressure Monte Carlo method with variable shape of the box &ij=| Aot zk 91U} U 2 @
[110]. The elastic constants were determined by a version
[57,103 of the strain-fluctuation metho@loo—loa Al- is the (Lagrange strain tensor,UiEXi_Xi is the displace_
though the method seems to be slower convergent than somgent vector,X; ,x; describe the reference state and the de-
methods with fixed shape of the periodic Hd05,109, this  formed state, respective[$1], andd;=d/dX; .

disadvantage is, in our opinion, fully compensated by sim- At constant pressurp (i.e., when the stress is isotropic,
plicity of the method and the fact that all the elastic constant%ij =—pé;) it is, however, more convenient to use other
are calculated within zingle run during which also the ejastic constants;;,; obtained by the following free en-
(equilibrium) reference state is determindés the determi- thalpy (Gibbs free energyexpansior(82];

nation of the reference state with the same precision in a

separate run would require a run of a comparable length, this 1D
saves about 50% of the simulation tim&he elastic con- AG/V,=A(Fejasiict PV)/Vp== > Bijweijen, (3
stants can be obtained in a single run also by some other 2

methodq43,47,104 for which, however, as well as for most

of other known methods, the use of explicit microscopic for-whereV,=V, . is the volume of the reference state chosen
mulas for the pressur@r even for its derivativept3,104) is  as the equilibrium state at the pressprandV is the volume
required. In the case of anisotropic and noncentral moleculasf the deformed system. It can be seen that the second-order
interactions the microscopic pressure is, however, often exexpansion of the free enthalpy at nonzero pressure is a qua-
pressed by rather complicated formulas. Applying thedratic form, without linear terms, in the strain components.
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This is in contrast to the free energy expansi@i which
contains linear terms in the strain components.
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[114], i.e., by allowing the shape and the size of the periodic
box (described by additional degrees of freeddm change

There is a simple relation between the elastic constants such a way that, at equilibrium, tHaverage box fits the

Bij andCjj [82,112:
Bijkl:cijk|_p(5ik5j|+5i|5jk_5ij5k|)- (4)

The elastic constan®;;y, relate the strain componentg,
calculated with respect to the reference stat, the equi-

librium state at the isotropic pressysgto the changes of the
stress tensor components with respect to the state of the is

tropic pressure L o= o+ pJ;j),
AUu:% Bijki€ki - )
Inverting Eq.(5) one obtains

Sij:% Sk Aoy, (6)

where the elastic complianc&y, are related to the elastic

constantsB;;, by the equatio113]

% SijmnBmnki= (i 9j + 6 9j) 2. (7)

If the single component,, of the stress tensor corre-

sponding to pure tension or compression in éhdirection is
changed infinitesimally, byA=A¢,,—0, and the other

components are kept intact, then the strain calculated with

respect to the equilibrium reference state is given by
&ij= Sjjaad- (8)

Thus, the Poisson ratio measured in the direcffoperpen-
dicular to « is given by

_EBB_

S aa
Vap= — Phe, ©)

Saa Saaaa

Taking into account tha,yy= Sy xx, it follows from Eq.
(9) that

_ Sxxyy _ Sxxyy
S)’yyy

(10

Vyy

v
S)(XXX ' X

B. The box matrix and the reference state

In contrast to a fluid, which can be simulated in a periodic
box of an arbitrary chosen shape, simulations of a cryst
require using a periodic box that fits to the unit cell at the

a

equilibrium unit cell corresponding to the conditions studied.
In such simulations, which can be performed in the frame-
work of various generalizations of the constant pressure en-
semble[45,101,102,109,114,115it is convenient to de-
scribe the periodic box by the box matitixwhose columns
are formed by the components of the vectors describing the
aeriodic box[115]. To avoid rotations of the system, the
umber of the components of the box matrix should be equal
to the number of the independent components of the strain
tensor,D(D+1)/2. One of the possibilities to fulfill this
requirement is to put some restrictions on possible directions
of the box edge$110]. Another possibility, adopted in the
present paper as more convenient for calculations, is to keep
the box matrix symmetric during the simulatiojisl 6].
Denoting the matrix of the reference state Hy=h ¢
[which is taken as the averagequilibrium) box matrixh at
the pressurg], one can write the strain tensor in the form

e=g(h,H)=(H Lh-h-H 1-1)/2, (11

where the matrixh is assumed to be symmetriehich im-
plies thatH is also symmetrig H™! is the matrix inverse of
the reference box matrix, ardis the unit matrix of dimen-
sionality D. The volume of the box is equal to the absolute
value of the determinant of the box matrix,

V(e)=|deth)]. (12

The configurational partition function oN particles,
which are closed in a periodic boX(&) obtained by a de-
formation (described by the straim) of the reference box,
Vp=V,s=V(0), can be written as

Z[V(e)] =exp( - %)

1 U
= (N) (N) _
Ni V(s)dr fdﬂ ex;{ kT)’ (13

wherer;,Q; (i=1, ... N) denote the particle positions and
orientations,U is the interaction energ¥ is the Boltzmann
constant,T is the temperature, anid[V(e€)] is the free en-
ergy of the system at the strain

For further considerations it is convenient to define the
gollowing partition function:

studied thermodynamic conditions. This is because any mis-

fit between the periodic lattice generated by the unit cell and
the periodic box results in appearance of additional, un-
wanted, internal stress which usually makes the studied

Z:J dsD(D”)’zexr{—%(Tg)}Z[V(e)], (14

structure thermodynamically unstable. In general, however,

neither the shape nor the size of the unit cell are known fowhere the integration over the strain tensor concerns all its
studied systems. This problem can be solved by using thB(D+1)/2 independent components. Using E¢s3) and
Monte Carlo counterpaffLl10] of the Parrinello-Rahman idea (3) one obtains
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 pV(e)+F[V()]

_ D(D+1)/2
Z f de exp{ KT

=f dePC D 2exd —G[V(£)]/kT]

=exp[—G[V(0)]/kT]f deP(P+1)/2

v D
__p .. .
Xexr{ 2kTi% Bljkl£|]£k|j|l (19

PHYSICAL REVIEW E67, 036121 (2003

j dePCTDAAV)2 exp{ — G[ V(&) ]/KT}
((AV)?)=

f dePPC+D2exy — G[V(e)]/kT}

=kTV,Kr. (19)

C. Determination of the thermodynamic averages

The strain tensor is defined with respect to the reference
state which corresponds to the equilibrium state of the sys-
tem at the given pressure. Since, in general, the equilibrium

where the last equality is correct for stable reference stat€Sie is not known in advandge., before the simulation

[described by positive definite quadratic fofd)] when the

one might think that to calculate the thermodynamic aver-

system is large enough, i.e., when the strain fluctuations argges of the form(17) which depend on the strain compo-

small.
The following relation comes from Eqggl5) and (7):

kTSjkl
i = , 16
<8 18k|> Vp ( )

where

f deP@*D2f expf — G[ V(&) ]/KT}

()= @

f dePP+D2exy — G[V(e)]/KT}

denotes the thermodynamic averaging of a funcfiamith
the partition function(14). In particular, the averagequi-
librium) volume at the pressungis calculated as

Vp=(|de(h)]). (18)

It is worth to add that the compressibilityK;
=—(1N,)(dVIdp)t, can be obtained from the equation

fdhxxf dhyyf dhxyva ds(N)fdQ(N)f(s(N),Q(N),h,H)exq—(U+pV)/kT]

nents, it is necessary to perform an initial run to determine
the reference statéMoreover, as the reference state must be
determined very accurately, the initial run would not be com-
putationally cheap.The present, constant pressure method
does not require, however, any extra initial run to determine
the reference state. This is illustrated below for a two-
dimensional system(The three-dimensional case is dis-
cussed in detail elsewhef&17].)

The integrals over the strain components can be converted
into integrals over independent components of the box ma-
trix. Using the formula(11) and denoting the Jacobian of the
transformation Ki,hyy,hyy)— (exx,eyy.8xy) by j(h,H),
one can express the averagéth respect toe) in Eq. (17)
by the ratio of the averages with respecthto

where, forf=f(s™), Q™) ¢(h,H)) being any(smooth func-

tion of the configuration of a two-dimensional system, the
averages- - - )y, are defined as

(21)

(F)n=

fdhxxf dhyyf dhxyva ds(N)f dOMN exd — (U+pV)/KT]

To eliminate the strain from the boundary dependences of the integrals {2 Bgthe “normalized” (scaled to a unit square
positions of the particless=h"1r; (i=1, ... N), are used; the box matrix is symmetric. For the symmetric box matrix in

two dimensions the Jacobian

&(Sxxvsyyvsxy)

j(hH)=

‘9(hx><vhyyvhxy)

_ (hxx+ hyy)(h>2<y_ hxxhyy)

2(H>2<y_ HxxHyy)3
=jn(h)ju(H) (22)

is a product of a function that depends only on the components of the box rhairig a function that depends only on the
components of the reference box matkls which can be thought of aginknown constants. Thus, the thermodynamic

average of the functiohcan be written as
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thXXJ dhyyf dhny ds(N)J’ dOMNf exp(— Gpicro/KT)
()= inn/{inn=
thXXJ dhyyf dthJ ds<N>f dOMN exp( — Gpicro/KT)

, (23

where the “microscopic free enthalpy” nents of the symmetric box matrix only; the orientatidds

_ and the scaled positiorss of the particles were not changed.
Crmicro=KTLINF DInVHInTr(n)]=U+pV, (24 1pose moves determined the size and the shape of the box,
doesnot depend on the reference system. and their acceptance ratio was close to 20%.

Equation(23) states that at isotropic pressure the Monte It is well known that the anisotropy of the periodic box
Carlo simulation can be performewithout knowing the —can modify(even qualitatively, see, e.g., Ref418,119) the
structural parameter@.e., the reference statef the system thermodynamic properties of the studied system. To mini-
at equilibrium in advancéi.e., before performing the simu- Mize the influence of the box anisotropy, samples of shapes
lation run in which the elastic properties of the system areclose to the square have been used. The simulations of the
computed. This is in contrast to the general case of an anfentamers and th& andB structures of the heptamers were
isotropic stress when the microscopic enthalpy is an explici€arried out for samples being consecutive quadruplings of a

function of the strain and when one has to know the referminimum sample, which consisted of eight horizontal rows
ence statdeforethe simulations. parallel to thex axis, each row composed of seven mol-

The simplest scheme to determiBgy in Eq. (16) is to ecules. This determined the sizes of the studied systBims:
store during the simulations the values of the box matrix=56,224,896. As th€ structure of the heptamers cannot be
componentsh; in a file. After finishing the run, the stored arranged in a &7 periodic lattice, only samples df
data can be used to compute the aver@ggilibrium) values =224_,896 heptamers were simulated in this case. Addition-
of the components of the box matrigh;;)= (hrer)ij=Hi; , ally, S|mulat|on§ 01N=36,144,.5_76 were performed _for tiae _
by substitutingf = h;; in Eq. (23). The calculated equilibrium structure. In this case, the minimum sample consisted of six
(referencg values can then be used to compute the straiforizontal rows parallel to the axis, each row composed of
tensor components;; which, in turn, makes possible calcu- Six molecules. Typical lengths of the runs were equal to
lation of the elastic compliances according to E2D). 3x10° trial steps per particlécycles for N=36, 5x 10°

Remark It is worth to add that the method used in the cycles forN=>56,144, 10 cycles forN=224, and 10’
present workdoes notrequire creating any file in which the for N=576,896. Some longer runs were also performed to
data are stored. Namely, it follows from Ed&1), (16), and compare different random number generators and to check
(18) that to obtain the compliances it is enough to averagdhe convergence of the method. Up to 10% of the typical
during the simulations a few monomials consisting of thesimulation length was considered as the equilibration time
box matrix components of powers not exceeding147]. and was not taken into account in the averaging procedures.
The average values of these monomi@eluding the aver- This can be thought of as using large “safety” margin be-
age values of the box matrix components which define th€ause the analysis of the evolution of the box matrix compo-
reference stajecan be substituted in the formula6) at the  nents as well as the particle positions and orientations distri-
end of the run that gives the elastic compliances. HoweveRutions indicated that the equilibrium was reached for times
creation of a file with the “history” of the box evolution not at least one order of magnitude smaller.
only offers a simple and convenient scheme for determina-
tion of the compliances; , but also helps to estimate the Ill. HIGH DENSITY STRUCTURES OF THE PENTAMERS
equilibration “time” and the statistical errors of the results AND THE HEPTAMERS

obtained. )
Various structures of the pentamers and heptamers have

been found in computer simulatiof53-58. The simula-
tions proved that in both cases there exist the fluid phase and
In the MC simulations discussed in this paper two kindssome solid phases which represent various orientational or-
of trial moves were performed. The first concerrgsidnulta-  derings, e.g.(almos} free rotation(strongly hindered rota-
neous changes of the molecular mass center position and th#on, and frozen rotatiof54,56—58. The latter ordering was
molecular orientation; the acceptance ratio was kept close tobserved at the highest densities which are the subject of the
30%. The maximal amplitudes of the allowed changes of theresent work; at these densities the molecules in both sys-
translational degrees of freedom and the rotational @me tems only vibrate around their lattice positions and librate
radiang were the samegOther choices, e.g., based on equal-around their preferred orientations.
ity of average kinetic energies of translational and rotational In the system of the pentamers, only one structure without
degrees of freedorfil10] give the same results, within the molecular rotation has been foufi3,54,58. This structure
experimental error.The second kind of moves, tried about contains two pentamers in itectangular unit cell and its
N2 times less frequently, concerned changes of the compaeometry at close packing can be seen in Fig);3ee also

D. Details of the simulations
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TABLE |. Parameters of the studied structures at close packing,
see Fig. 2; the distances are given in unitgrofThe molecule 0 is
always placed at the origin of the coordinate system, i.e., for each
structurex,=y,=0. The two-dimensional volumé.e., the arep
per particle of the considered structure at close packing is equal to
alyruetirdpiretidn,  wheren,=2 for structuresP,A,B and
n,=4 for the structureC.
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Pentamers$
al?)=2.4048671732 b{")=4.2360679772 $o=0
x;=1.0131106571 y1=b{)/2 ¢1=7l5
HeptamersA
a;)=3.0566685376 b{)=5.5150210832  ¢,=0
x;=1.9144263193 y1=b{})/2 d1=7l7
HeptamerB
a})=3.0566685376 b{®)=55382990167  ¢,=0
x;=1.3656999121 y1=b{®)/2 d1=7l7
HeptamerC
FIG. 2. The close-packed structures in tf@ pentamer and a(c(r?: 6.0309063912 x,=1.2832327269
(b)—(d) heptamer systems. The unit cell for each of these structures b(c%)=5-5371391576 y,=2.7685695788
is rectangular. In the case of the heptamers they are further referred $o=0.2843960475 #,=0.1644029030
to as(b) the B structurec) the A structure(which is denser than the x,=3.0154531956 X3=4.2986859225
B structure at close packingd) the C structure(which is the most _ y1=0.1230590461 ya=2.8916286250
dense structure of the known heptamer structures at close packing _ _
[55,58)). The molecular orientationg are indicated in this figure $1=~ o $3=~¢2
by line intervals of orientations & for pentamers and ¢ for hep-
tamers.

It is worth noticing that none of the latter two structures
(A andC) was obtained by either a spontaneous transition
from the structurdd or by compressing any other phase. This
& despite thati) at close packing both these structures are
"Yenser tharB and (as it can be seen in Fig.)3(ii) their

iotherms are located below the isotherm corresponding to the

Table I. The “row structure” shown in Fig. (@) consists of

the x axis, and the molecules in the consecutive rows a
antiparallel to each other.

In contrast to pentamers, the heptamers fdah least
three different (thermodynamically stable or metastgble
structures without molecular rotation at the highest densities
[55,58. All these structures, shown in Figgb2—2(d), are of 1000 4
rectangular unit cells. The structures in Figgh)2and Zc) ]
are similar to the structure formed by the pentamers, and 1

g

they differ from each other by the relative positions of the p
rows. One of them, denoted B, was obtained by a slow
compression of the system from the lower density, orienta- 100 4

tionally disordered, phase of the triangular lattice. The close-

packed version of this structure can be seen in Fig). 2t is

interesting to notice that the structuBds not the most dense

structure which can be obtained by packing rows of the

closely packed heptamers of the same orientation within a 10 4
row; see Table I. In Fig. ) one can see a structure, further ] BEaggg
referred to ash, which is the most dense of such row struc-
tures[58]. The structures\ andB have two heptamers in the . . . ' .
unit cell. Obviously, at densities high enougte., when the 1 1.02 1.04 1.06
pressurep tends to infinity, the structureA must be more Vivi©

stable tharB. The structuré\ is, however, not the most dense
structure of the heptamers. Even more dense structure of the g, 3. The isotherms of dense solid structures for the heptamer
heptamers, further referred to as @estructure, is shown in  gystemV is the two-dimensional volumé.e., the arenof the sys-

Fig. 2d). The structureC is the most dense structure of the tem, anav(S) denotes its value for the structu@eat close packing;
heptamers we know and its unit cell contains four moleculeg* is the dimensionless pressure defined in Table IIl. It can be seen
that are not oriented along the horizontal molecular “rows;” that the isotherm corresponding to tBestructure is located above
see Table I. Obviously, in the limit gb— o this structure the isotherm of the\ structure, which, in turn, is located above the
must be more stable than the structée isotherm of theC structure[55,58].
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TABLE II. The equation of state and the unit cell parameters TABLE IIl. The dimensionless elastic compliances of the pen-
(extrapolated to the thermodynamic lipndf the studied structures tamer system in the rectangular solid phase. The dimensionless
of the pentamers and the heptamers. The parameters are definedpasssure is defined a& =po?/kT.
follows: v(structure) _V/V(sptructura a (structur a/a(structure)

truct _ t
.(kstructu(rsqru b/b(s ructurg ’ X (XI X )/a(s ructurg ’ (y| N p* S:xxx S;/ryyy S:xyy S:yxy

—Yo)/bg, C“”e), whereV is the (two- dlmen5|onal volume (.e., 5 o 6 6
the area of the systema,b are the sides of thé&ectangular unit 56 15 437(11)/10 280(5)/10 —231(7)/10 152(4)/1

cell, V{structure alstructurg. p(stucturd genote the close-packing 224 15 432(9)/10 278(7)/16 —231(5)/10  159(5)/10
limits of V,a,b for structuresP,A,B,C, andx; ,y; ,¢; are the aver- 896 15 429(11)/10 270(7)/16 —225(8)/16 158(5)/10
age coordinates and orientations of ttie molecule of the unit cell 15 429(10)/16 272(7)/16 —227(7)/16 160(5)/10
(see Fig. 2 For the first three structures, the valuesydf, ¢y, 56 50 341(12)/10 186(3)/16 —145(6)/1 924(17)/10
are not shown because they are, respectively, equaf £8,0,7/n 224 50 339(11)/19 183(4)/16 —140(6)/16 928(15)/18
(wheren=5 for pentamers anci=7 for heptamenswithin the 896 50 345(5)/10 176(2)/16 —134(2)/16 920(12)/16
experimental error. © 50 343(7)/16 178(3)/16 —135(3)/16 923(13)/16
- 56 150 333(5)/10 185(2)/10 —127(2)/1G 941(9)/16
P 15 50 150 500 224 150 331(5)/10 179(3)/16 —120(2)/16 956(10)/18

Pentamer® 896 150 327(6)/10 179(3)/13 —118(3)/1G 929(16)/16
vl 1.040926) 1011961)  1.00394%6) 1.0011784) © 150 328(6)/10 178(3)/10 —118(3)/10 940(14)/18
al, 1034378) 1009342)  1.0030186) 1.00098%4) 56 500 290(6)/10 162(2)/16 —109(3)/1G 828(12)/18
£ 1.006345) 1.0025947) 1.0009284) 1.0002883) 224 500 278(3)/1d 160(2)/16 —105(2)/18 819(11)/18
x* ' 0.442763) 0.4268307) 0.4230434) 0.4218863) 896 500 283(5)/1D 162(2)/1§ —104(3)/16 818(16)/16

HeptamersA © 500 279(4)/18 161(2)/1§ —104(3)/16 817(14)/18
viy 1.024743) 1.0071888) 1.0023778) 1.0007123)

ar, 1.011991) 1.00348%5) 1.0011525) 1.00034%2) .
@ 1.012612) 1.0036645) 1.0012124) 1.0003682) these structures can be thermodynamically stable.

o 0'625823) 0.62617(07) 0.6262654) 0.6262962) The unit cell parameters of the studied solids at close
! ' ' HeptamersB; ' packing(i.e., in the limit of infinite pressupeare collected in

Table I. The corresponding parameters at a few finite pres-
vl 1025833 10072178 1.0023785) 1.0007104) oncing b P

sures are shown in Table II.
afy, 1.019933) 1.0055697) 1.0018324)  1.0005473)
bfz 1.005802) 1.0016204) 1.0005362)  1.0001602)
XX 0.464234) 0.4516666) 0.4483963) 0.4472723) IV. ELASTIC PROPERTIES

Heptamers<C As it was mentioned in the Introduction, no defects were
v(ey 1.0247@5) 1.007243)  1.0024023) 1.00071989)  present in the structures studied in this work. Defects are,
alcy 1.0141@4) 1.004132)  1.0013712) 1.00041046)  however, unavoidable at densities below the close packing in
bicy 1.010472) 1.003072)  1.0010182) 1.000304#4)  the thermodynamic limit. Thus, in this context, as well as in
o 0.284374)  0.2843%3) 0.2843982)  0.284395%1) the context of the well known problem concerning the lack
X1 0.507042) 0.502061) 0.5006841) 0.500204%4) of any true translational ordering in two dimensid69,60,

Y1 0.023682) 0.02265@9) 0.0223661) 0.02226663) the obtained elastic constants and compliances can be
¢, —0.284375) —0.284393) —0.28439%3) —0.2843951) thought of as describing local elastic properties of the studied
X,  0.216942) 0.2139978) 0.2131811) 0.21289783)  Systems.

Yo 0.505232) 0.5015348) 0.5005091) 0.50015243)

¢,  0.164434) 0.164413)  0.16440%2) 0.1644082) A. Simulation results

X3 0.723993) 0.716062) 0.7138672) 0.713102@5)
Y3 0.528913) 0.524192) 0.52287%2) 0.52241914)
¢3 —0.164435 —0.164413) —0.16440%2) —0.16440382)

In Tables IlI-VI the dimensionless elastic compliances
Si*jk,zsijmazlkT obtained for the pentamers and the hep-
tamers are collectedWe do not show the compliances,
ijxy,S;*yyy which have to be zero by the symmetry require-
latter one in the whole density range where they are mements) It can be seen that the elastic compliances obtained
chanically stable. This indicates that the local minima of thefor systems as small d&8=56 particles differ by only a few
free energy corresponding to the solid structures of heptanpercent from the estimates obtained for the thermodynamic
ers are very deep. In consequence, the time necessary fomit N—o. The same is true for the Poisson ratios which
occurrence of any structural transition in the heptamer syssan be obtained from the compliances by Eif).
tem at high densities is much longer than the times of the It is worth noticing that theijyy compliances are nega-
simulations performed for the studied sizes of the samplegive for the rectangular structure of the pentamers andthe
This allows one for the determination of the elastic proper-structure of the heptamers. Such a behavior is typical for
ties of the studied structures for a whole range of high presmaterials existing in nature and it implies that the Poisson
sures despite that at a randomly chosen pressure in this rangstios of these structures are positive. In contrast to them, the
we know with probability equal to unity that only one of remaining(more densestructures of the heptamers exhibit
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TABLE VI. The dimensionless elastic compliances of the

tamer system in the A phase. The symbols are the same as in Talleptamer system in th€ phase. The symbols are the same as in

1. Table Il

N p S:xxx S;kyyy Sﬁxy)I S’xkyxy N P S:xxx S’ykyyy S:xyy S:yxy
56 15 699(15)/19 746(13)/16 149(9)/16 201(7)/16 36 15 981(18)/19 661(11)/16 44(10)/16 774(10)/16
224 15 682(10)/10 721(11)/16 160(7)/16 180(2)/16 144 15 964(25)/1D 663(15)/16 63(10)/16 744(13)/16
896 15 682(11)/1D 706(9)/16 161(13)/16 180(2)/16 224 15 920(8)/1D 649(4)/16 52(8)/1¢ 736(8)/16
© 15 679(10)/16 707(9)/16 163(10)/16 178(1)/16 576 15 928(15)/1D 645(6)/16 49(9)/1¢ 744(7)/16
56 50 571(5)/16 615(6)/1G 124(7)/1G6 114(2)/16 896 15 928(16)/1D 658(12)/16 47(9)/1¢ 729(14)/16
224 50 570(6)/10 620(12)/18 139(5)/13 115(2)/16 o0 15 927(15)/16 652(11)/16 53(8)/1¢ 733(11)/16
896 50 567(7)/10 601(11)/10 125(6)/1G6 109(2)/16 36 50 785(6)/10 594(4)/10 51(4)/10 600(4)/10
w 50 568(7)/16 608(12)/10 128(6)/1G 110(2)/16 144 50 787(15)/10 576(7)/1G 69(6)/10 574(9)/10
56 150 635(7)/1® 696(7)/16 143(7)/16 1170(14)/16 224 50 766(7)/10 565(6)/1G 67(7)/10 567(5)/10
224 150 624(7)/1D 690(12)/16 146(7)/16 1136(12)/16 576 50 741(12)/10 562(7)/16 57(6)/10 581(5)/10
896 150 617(7)/1 664(11)/16 131(9)/16 1149(13)/16 896 50 751(13)/10 575(6)/13 58(8)/10 590(12)/10
o 150 618(7)/18 671(12)/18 137(8)/16 1139(12)/16 « 50 755(13)/10 566(7)/13 63(8)/10 576(9)/10
56 500 568(5)/19 619(5)/1 119(5)/16 1016(10)/16 36 150 834(6)/1d 643(7)/1§ 56(5)/1¢ 631(6)/16
224 500 554(6)/1D 599(9)/16 128(4)/10 1009(10)/16 144 150 813(26)/10 627(14)/16 70(8)/1¢ 617(12)/18
896 500 567(7)/1b 588(6)/1G 122(6)/16 998(12)/18 224 150 830(10)/10 650(10)/16 78(5)/1¢ 616(7)/16
o 500 560(10)/1® 590(10)/18 126(5)/16 1000(12)/18 576 150 819(11)/10 625(8)/1 74(5)/1¢ 624(7)/1G

896 150 830(10)/10 620(10)/26 51(7)/1¢ 609(10)/16
w 150 822(15)/1® 628(11)/16 60(7)/1¢ 614(10)/16

positive compliancess;*xyy, i.e., negative Poisson ratios. 36
Thus, theA and C structures are very simple examples of 144
anisotropic auxetic phases. The possibility that some noncore24
vex molecules may form auxetic phases has been pointed ogte
by one of the authors in the pd€9,70. 396
Part of the results presented in Tables Il —VI was obtained.

500
500
500
500
500
500

770(12)/19
736(10)/10
754(12)/10
749(6)/10
751(9)/10
745(9)/18

579(13)/18
559(10)/18
558(8)/10
573(5)/10
565(9)/18
562(8)/10

65(5)/10
68(8)/10
62(4)/10
67(4)/10
60(9)/10
64(7)/110

558(6)/10
543(5)/10
552(6)/10
561(5)/10
562(7)/10
566(7)/10

by using a few Hewlett-Packar(HP) workstations. It ap-

pears that the simulations on these workstations can be

speeded up substantiallplmost twicg when the(pseudd  Weyl sequence. This generator, which is also convenient to
random numbers are generated by using the SNWS generatase for parallel computations, has already been tested by us

proposed by Holianet al. [120], which is based on the

in the case of free energy computations for the fcc and hcp
crystals of hard spher¢&21]. Most of the runs in the present

TABLE V. The dimensionless elastic compliances of the Simulations of the elastic constants have been done by using
heptamer system in thB phase. The symbols are the same as inthe SNWS Holian’s generator and its simple modifications

[122]. In Fig. 4, representative examples of the accumulation
plots are shown for the elastic compliances andxfieand

yx Poisson ratios calculated for the rectangular structure of
the pentamers by using two random number generators,
DRAND48 and the SNWS Holian’s generator. It can be seen
that the results obtained for both the generators agree within
the experimental error. This encourages one to use the Ho-
lian's SNWS generator in other Monte CarbIC) simula-

Looking at Fig. 4 one can also estimate the convergence
of the computed data. As expecteth,109g, the convergence
of the simulation results in the case of the elastic properties
is much slower than, e.g., in the case of the equation of state.
The slow convergence of the fluctuation method is also illus-
trated in Fig. 5 where one can see the accumulation plots of
the elastic properties obtained fdf=896 pentamers for a
run consisting of 4.2 10" MC cycles.

It is well known that the real time of simulations using
any computational method can be reduced if the method can

Table 111.

N p* S:xxx S;yyy S;:xyy S:yxy
56 15 223(3)/10 892(19)/16 —631(18)/16 118(2)/1G
224 15 219(4)/19 861(7)/16 —606(12)/16 114(2)/16
896 15 217(7)/1D 848(11)/16 —622(22)/16 113(2)/18
w 15 217(6)/16 847(8)/16 —612(18)/16 113(2)/18
56 50 129(2)/16 607(8)/16 —216(8)/1G 777(5)/10 tions.
224 50 126(2)/19 584(5)/16 —200(9)/1G 768(13)/18
896 50 125(2)/10 577(5)/10 —196(10)/16 731(12)/10
w 50 125(2)/16 576(5)/1 —195(11)/16 747(6)/1G
56 150 133(2)/10 650(6)/16 —195(10)/16 826(9)/18
224 150 133(1)/10 636(4)/16 —183(10)/16 799(7)/1G
896 150 132(2)/10 641(9)/1¢ —188(12)/16 807(11)/16
o 150 132(2)/10 637(7)/16 —184(11)/16 800(9)/1
56 500 117(2)/1® 580(6)/10 —158(8)/1G 714(7)/16
224 500 117(2)/1d 572(6)/1 —157(6)/13 687(9)/16
896 500 116(2)/1b 581(9)/10 —155(9)/10 685(9)/18
o 500 116(2)/18 576(8)/1 —156(8)/10 681(9)/18

be parallelized. Since the present method does not require to
know the reference state prior to simulations it can be fully
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23: ;s/: and (e), (f) the Poisson ratios ob-
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parallelized and easily implemented on a parallel computerformed in this case. In the case) all the initial configura-

In Table VII, we collected the results obtained for the elastictions were the same as the initial configuration in the ¢ase
constants for three runs of the same lengtk 4’ MC but the sequences of the random numbers were different;
cycles(after equilibration. The first run(a) was performed 5x10° equilibration cycles were performed in each of these
by a single processor starting from a perfectly ordered rectruns. It can be seen that the obtained results are in agreement
angular structure; the initial 810° cycles were spent for within the combined statistical errors.

equilibration. The other two runs were performed parallelly
by 16 processors. In the cad® the starting configurations
corresponded to the configurations obtained within the first
run after (4+ m) x 10° MC cycles wheran=1, ... ,16 is the Some properties of the hard-core systems, such as pres-
processor number; the sequences of random numbers wesare or elastic constants, are divergent in the close-packing
different in each case. No equilibration cycles were perdimit. Other quantities, such as compliances, tend to zero in

B. Free volume approximation
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40 — T T T nearest neighbors. This approximation can be proven to give

asymptotically exact results for the equation of state of hard
sphereqor hard discpin the close-packing limif124]. It is

well known that at high densities the equation of state of
some other hard-body systems is also well approximated by

= 20 W . the free volume theory23,128,130. The free volume also
. predicts correctly the asymptotic form of the elastic con-
MG BEs stants of hard spheres and did&6,38,45,46 It will be
= —O—— ST shown below that the free volume approximation works also
well in the case of the studied phases of pentamers and hep-
tamers.

where

It has been shown in Ref[124] that for the
D-dimensional hard spheres of the diameterthe free vol-
umev V) near the close packing is proportional to i
power (@ being the number of the molecular degrees of free-
dom, i.e.,g=2 for hard discs and= 3 for hard sphergsof
the excess distancé=a— o between the centers of the
neighboring spheres at their lattice site positionkich are
distanced bya) [124],

vFV=¢(6)9, (25)

Slo=8*=(VIVp) P -1, (26)

V is the volume of the systenV, is the volume of the
considered structure at close packing, andepends on the
shape of the free volume. Applying this formula to aniso-

0.2 1 tropic hard bodies and assuming that near close paaking

0 1 1

does not depend on the volume per partighich means
o that the free volume does not change its shape when the
0 10 20 30 40 volume of the system is changed by isotropic pressone

105N can neglect the constantand write the configurational free
me energy per one “moleculetbody) in the form

FIG. 5. The accumulation plots ¢& the dimensionless elastic
compliances andb) the Poisson ratios obtained fof=896 pen-
tamers in the rectangular phasepdt=50.

this limit. In general, to analyze numerically quantities which
diverge or tend to zero, it is meaningful to rescale them by
their asymptotics obtained from a theoretical research. In the
particular case of the hard-core systems the asymptotics are
offered by the free volume approximatiph5,26,123—-12p

The essence of the free volume approach consists in the
observation that in the condensed matter phases the mol-
ecules can be thought of as moving in shells formed by their

TABLE VII. Comparison of results obtained fod=56 penta-
mers at the dimensionless presspie=50: (a) a single long run,
(b) 16 parallel runs initialized from various structures generated in

fFV)= —kTInv )= —gkTIn[(V/V,,)*P - 1]. (27)

This leads to the following equations for the pressure and the
bulk modulus:

of gNkT 1
(FV)— _ L P
P J(VIN) ~ DV (”5*)’ 28
Ip
B{fV)=— v KW
1ol 1
_gNkT 1+ +5+ o (29
DV S5* (6%)2]"

the long run,(c) for 16 parallel runs initialized from a periodic where §* is defined in Eq(26).

lattice obtained by uniform scaling of the close-packed structure.
Details of the runs are discussed in the text.

run Sxx Sgfryyy S:xyy S:yxy

As it is easy to see, the pressure shows singularity of the
form (6*)~ ! whereas the leading singularity of the bulk
modulus is of the form §*) 2. The elastic constants are
expected to show the sanfleading singularity as the bulk

(@ 3365(15)/10 18358)/10 —13857)/10 960(7)/1 ~ modulus[35]. o
(b) 3363(16)/10 18237)/10 —13859)/10° 947(6)/10 In Fig. 6 we show that the free volume approximation
(0 3328(22)/18 183496)/10 —13708)/10 953(6)/14 works well both in the case of pentamers and heptamers for
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FIG. 6. The experimental data obtained for the pentartmen circley and the heptamerghe phase#\ B, andC are represented by
diamonds, squares, and crosses, respecjidijded by their asymptotics obtained in frames of the free volume approximatig@a)fdre
pressure andb) the bulk modulus, and by the free volume estimate of the bulk modulugcfeff), the elastic constants. The elastic
constantsCy;,; were calculated by the formuld®) and(4). In (g) and (h), we show the Poisson ratios obtained from Eif).

the elastic constants to the bulk modulus obtained from the V. SUMMARY AND CONCLUSIONS

free volume approximation are well approximated by linear

functions of the inverse density. In particular, as predicted by Elastic properties of dense solid structures for pentamers
the free volume theory, the ratiggp"") andB;/B{F¥) tend and heptamers were determined by analysis of the box ma-
to unity at close packing. In the first case the accuracy of thdl X ev_olutlor_1 in Monte Carlo simulations. It has_ been shown
experimental determination of this limit is much higher that s_|mu|at|ons of systems as small ls-56 give regults
(close to one promilethan in the second cagabout 2%. that differ by only a few percent from the results obtained by

. . ) C extrapolation to the thermodynamic limit.
The ordinates of thélinea fits shown in Fig. 6 at vol- The asymptotics of the obtained equation of state, bulk

umes corresponding to close packings of the studied struGpodulus, and elastic constants are in agreement with predic-
tures characterize quantitatively the singular behavior in théions of a simple version of the free volume theory. The
vicinity of close packings of studied structures. The obtainectoefficients of the leading singularities of pressure and elas-
coefficients and directional Poisson ratios are collected inic constants in the vicinity of the close packing have been
Table VIII. It can be seen that some of the values of direc-determined. These coefficients can be useful to construct and
tional Poisson ratios are negative. to test various theoretical approximations concerning elastic-
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TABLE VIII. The extrapolated values of the rescaléaly the  (reference stajeof the unit cell of the studied system as a
free volume bulk modulyselastic constants and directional Poisson simulation input. The referend@quilibrium) state is deter-
ratios in the close-packing limit for the pentamers and heptamersmnined within the same run in which the elastic properties are
The errors are between 2% and 4%.denotes the pentamers, determined. This saves a substantial amount of the simula-
whereasA, B, andC denote the studied phases of the heptamers. Ition time. This also allows one to increase the accuracy of
is worth noticing thatCy,y, is negative for the structuresandC.  the results by extending the length of the simulations simply
This implies negative values of the directional Poisson ratios showrby continuing them from the place in which they were
in the last two rows. stopped.

Although the applied method of elastic properties deter-

P A B c mination does not converge as quickly as methods using

Crooee/ BT 1.065 2697 1.284 1983 Oother thermodynamic ensembl@sg., theN-V-T ensemblg

Cyyyy/BEY 1.953 2510 2596 2594  its simplicity (there is no need to apply microscopic expres-

nyyy/B_Frv 0.695 —0.565 0.320 —0.208 sions for the pressure or its derivatiyeend possibility to

xyy : . . . . T

Cryry/BEY 0731 0.360 0517 0648 calculateall thg el:_slsgc constants in ginglerun encourage
one for applying it in various systems. In particular, this

Pxy 0.352 ~0.222 0.123 —0.084 method seems to be preferable in situations where one needs

Vyx 0.660 —0.207 0.239 —0.109 P

easy and quick estimates of the elastic properties for systems
with complex(e.g., molecularinteractions for which calcu-
lations of the forces are either time consuming or nontrivial.
VJ’his is, e.g., the case of some systems forming isotropic
Blyxetic phases which are the subject of separate works.

ity of molecular systems.

We should note that the computations performed sho
that the Poisson ratios of the most dense structures of he
tamers are negative. This result confirms earlier suggestions
that certain nonconvex molecules may form phases of
anomalous Poisson rati@d0]. We should stress that the hep-  We are grateful to Dr. B. L. Holian for sending us the
tamers are not an exception in this aspect; analytical andode of the SNWS$pseuddrandom number generator at the
computer simulation results concerning other moleculewvery beginning stage of this project. Part of this work was
forming thermodynamically stabl@uxetic phases will be supported by Grant No. 4T11F 010 23 of the Polish Com-
discussed elsewhere. mittee for Scientific ReseardkKBN). Part of the calculations

It is worth to add that the simulation method applied inwas performed at the Poznabomputer and Networking
this paper does not require using the structural paramete@enter(PCSS.
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