
ns

PHYSICAL REVIEW E 67, 036121 ~2003!
Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensio
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Systems of model planar, nonconvex, hard-body ‘‘molecules’’ of fivefold and sevenfold symmetry axes are
studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules,
referred to as pentamers~heptamers!, are composed of five~seven! identical hard disks ‘‘atoms’’ with centers
forming regular pentagons~heptagons! of sides equal to the disk diameter. The elastic compliances of defect-
free solid phases are computed by analysis of strain fluctuations and the reference~equilibrium! state is
determined within the same run in which the elastic properties are computed. Results obtained by using
pseudorandom number generators based on the idea proposed by Holian and co-workers@Holian et al., Phys.
Rev. E 50, 1607 ~1994!# are in good agreement with the results generated by DRAND48. It is shown that
singular behavior of the elastic constants near close packing is in agreement with the free volume approxima-
tion; the coefficients of the leading singularities are estimated. The simulations prove that the highest density
structures of heptamers~in which the molecules cannot rotate! are auxetic, i.e., show negative Poisson ratios.
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I. INTRODUCTION

Hard-core systems have been extensively studied in
literature to model various structures of matter@1–34#. The
interest in the systems comes from the fact that they
reproduce short range molecular correlations and exclu
volume effects. The hard-core systems are also interes
from the point of view of the fundamental requirements
the thermodynamics since, for obvious reasons, they ca
collapse at any pressure. It is worth to add that the f
energy of systems interacting through purely hard potenti
infinite when overlaps occur and zero otherwise, further
ferred to ashard-bodysystems, is reduced to the product
the temperature and the entropy.~It is so because all avail
able configurations have the same, usually assumed t
zero, potential energy.! In consequence, the complete equ
tion of state of the hard-body systems can be obtained f
a single isotherm.

Although the most common application of the hard-bo
systems concerns the theory of fluids, they can also play
role of very simple~purely geometric! models of solids. In
particular, they may help to understand the influence of
molecular shape on the elastic properties of~extremely! an-
harmonic solids. Determination of elastic properties of ha
body solids is, however, a nontrivial task because of nona
lytic character of their interactions. In the past, the elas
properties of hard-body solid systems have been determ
for convexbodies only: for hard spheres@35–44#, for hard
disks@45–50#, and for hard ellipsoids@51#. Since most of the
real molecules are neither spherical nor ellipsoidal, calcu
tions of elastic properties of other systems consisting of
isotropic hard bodies are of interest. In particular, studies
systems containing model molecules of nonconvex sha
which differ qualitatively from convex ones, may reveal ne
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properties and/or phenomena, some of which may find p
tical applications.

The planar hard cyclic pentamer and the planar hard
clic heptamer~see Fig. 1!, further referred to as the pentam
and the heptamer, are nonconvex, star-shaped@19#, hard-
body model molecules of fivefold and sevenfold symme
axes, respectively. These are the lowest symmetry axes
bidden in periodic crystalline phases. Theoretical and exp
mental studies of the pentamers@52–57# and the hepta-
mers@55,57,58# showed that various solid phases can exis
these systems.~We avoid using the word crystal in the con
text of planar systems because of the well known proble
with the translational order in two dimensions@59,60#.!
Some thermodynamic and structural properties of th
phases have been determined by Monte Carlo simulat
@53–58#. In particular, preliminary studies of some den
structures of the heptamers have indicated that they exh
anomalous~negative! Poisson ratios@55,58#.

The Poisson ration is a quantity characterizing deforma
tions of elastic media. It can be determined by introducing
infinitesimal change of the stress along a certain direct
~whereas other components of the stress tensor are
fixed! and measuring the strain along this direction and
direction perpendicular to it.n is defined as the negative rati
of the transverse strain change to the longitudinal str
change and, in general, it depends on both the direction

The Poisson ratios of typical materials are non-negat

FIG. 1. Geometry of~a! the pentamer and~b! the heptamer
‘‘molecules.’’
©2003 The American Physical Society21-1
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i.e., the materials contract~expand! transversely when pulled
~pushed! longitudinally. It should be stressed, however, th
negative Poisson ratio is allowed by the stability conditio
even in the case of isotropic systems@61#. Moreover, systems
of negative Poisson ratio are not just theoretical curiosi
@62,63# but can have a lot of interesting applications. Su
systems have been manufactured more than a decade
@64# and since that time they have been a subject of v
intensive studies@65–99#. Systems of negative Poisson rat
have been coinedauxeticsby Evans@74#. For anisotropic
systems showing the negative Poisson ratio in certain di
tions only, the nameaxial auxeticshas been introduced@89#.

The main aim of this paper is to determine elastic pro
erties of the defect-free, dense solid structures of pentam
and heptamers~i.e., in absence of vacancies, dislocation
disclinations, etc.! by applying the strain-fluctuation metho
@45,57,100–103# and to test the convergence of this meth
for elastically anisotropic phases. The present study reso
the problem of auxeticity of the most dense structures of
heptamers. It extends also the amount of available data
cerning systems consisting of anisotropic model molecu
interacting through highly anharmonic potentials. Such d
are useful to construct various theoretical approximati
and to test them.

The structure of the paper is as follows. In Sec. II, so
basic facts concerning the elasticity theory are recalled
the simulation method is presented. In Sec. III, we brie
describe the dense structures of the pentamers and hepta
whose elastic properties are studied in the present pape
Sec. IV, the obtained results concerning the elastic prope
of the studied structures are discussed and compared wit
free volume theory. The last section contains the summ
and conclusions.

II. THE SIMULATION METHOD

Various methods have been proposed in the literature
simulations of elastic properties of model syste
@38,39,43,45,47,48,63,81,100–109#. The computations de
scribed in the present work were performed by the cons
pressure Monte Carlo method with variable shape of the
@110#. The elastic constants were determined by a vers
@57,103# of the strain-fluctuation method@100–102#. Al-
though the method seems to be slower convergent than s
methods with fixed shape of the periodic box@105,109#, this
disadvantage is, in our opinion, fully compensated by s
plicity of the method and the fact that all the elastic consta
are calculated within asingle run during which also the
~equilibrium! reference state is determined.~As the determi-
nation of the reference state with the same precision i
separate run would require a run of a comparable length,
saves about 50% of the simulation time.! The elastic con-
stants can be obtained in a single run also by some o
methods@43,47,104# for which, however, as well as for mos
of other known methods, the use of explicit microscopic f
mulas for the pressure~or even for its derivatives@43,104#! is
required. In the case of anisotropic and noncentral molec
interactions the microscopic pressure is, however, often
pressed by rather complicated formulas. Applying t
03612
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present method, one avoids differentiating the interaction
tential as well as deriving and implementing to the progr
the microscopic formulas for the pressure~or the elastic con-
stants!. One can notice that the same is true for a meth
@44,50# which is based on numerical differentiation of th
free energy with respect to the strain.~The free energy can be
obtained, e.g., by the Frenkel-Ladd method@44,50,111#.! In
the latter method, however, various deformations around
reference state have to be considered, and the free energ
to be calculated at each of the deformations. In general, o
methods require also determination of the reference stat
advance, i.e., before the run in which the data necessary
the determination of the elastic constants are obtained.

Describing the applied simulation technique requires
calling some general definitions concerning elasticity of s
ids. This is done in the following section. Statistical m
chanical basis of the simulation technique is sketched bri
Sec. II B. In Sec. II C, the way in which one avoids calcula
ing the strain components during the simulations~and,
hence, the necessity to know the reference state in adva!
is shown. In Sec. II D, the remaining details of the perform
simulations are presented.

A. Elasticity of solids under external pressure

The free energy changeDFelastic corresponding to a ther
modynamically reversible elastic deformation of a solid u
der an external stresss i j can be expanded in power series
the components of the strain tensor. The second-order ex
sion reads@112#

DFelastic/Vre f5(
i j

D

s i j « i j 1
1

2 (
i jkl

D

Ci jkl « i j «kl , ~1!

where Vre f is the volume of the reference state,D is the
system dimensionality,Ci jkl are the components of the tens
of elastic constants~invariant with respect to the following
replacements of the indices:i↔ j , k↔ l , i , j↔k,l ),

« i j [S ] iuj1] jui1(
k

] iuk] jukD Y2 ~2!

is the ~Lagrange! strain tensor,ui[xi2Xi is the displace-
ment vector,Xi ,xi describe the reference state and the
formed state, respectively@61#, and] i[]/]Xi .

At constant pressurep ~i.e., when the stress is isotropic
s i j 52pd i j ) it is, however, more convenient to use oth
elastic constantsBi jkl obtained by the following free en
thalpy ~Gibbs free energy! expansion@82#:

DG/Vp[D~Felastic1pV!/Vp5
1

2 (
i jkl

D

Bi jkl « i j «kl , ~3!

whereVp[Vre f is the volume of the reference state chos
as the equilibrium state at the pressurep, andV is the volume
of the deformed system. It can be seen that the second-o
expansion of the free enthalpy at nonzero pressure is a
dratic form, without linear terms, in the strain componen
1-2
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This is in contrast to the free energy expansion~1!, which
contains linear terms in the strain components.

There is a simple relation between the elastic consta
Bi jkl andCi jkl @82,112#:

Bi jkl 5Ci jkl 2p~d ikd j l 1d i l d jk2d i j dkl!. ~4!

The elastic constantsBi jkl relate the strain components«kl
calculated with respect to the reference state~i.e., the equi-
librium state at the isotropic pressurep) to the changes of the
stress tensor components with respect to the state of the
tropic pressure (Ds i j [s i j 1pd i j ),

Ds i j 5(
k,l

Bi jkl «kl . ~5!

Inverting Eq.~5! one obtains

« i j 5(
k,l

Si jkl Dskl , ~6!

where the elastic compliancesSi jkl are related to the elasti
constantsBi jkl by the equation@113#

(
m,n

Si jmnBmnkl5~d ikd j l 1d i l d jk!/2. ~7!

If the single componentsaa of the stress tensor corre
sponding to pure tension or compression in thea direction is
changed infinitesimally, byD[Dsaa→0, and the other
components are kept intact, then the strain calculated w
respect to the equilibrium reference state is given by

« i j 5Si j aaD. ~8!

Thus, the Poisson ratio measured in the directionb perpen-
dicular toa is given by

nab52
«bb

«aa
52

Sbbaa

Saaaa
. ~9!

Taking into account thatSxxyy5Syyxx, it follows from Eq.
~9! that

nxy52
Sxxyy

Sxxxx
, nyx52

Sxxyy

Syyyy
. ~10!

B. The box matrix and the reference state

In contrast to a fluid, which can be simulated in a perio
box of an arbitrary chosen shape, simulations of a cry
require using a periodic box that fits to the unit cell at t
studied thermodynamic conditions. This is because any m
fit between the periodic lattice generated by the unit cell a
the periodic box results in appearance of additional,
wanted, internal stress which usually makes the stud
structure thermodynamically unstable. In general, howe
neither the shape nor the size of the unit cell are known
studied systems. This problem can be solved by using
Monte Carlo counterpart@110# of the Parrinello-Rahman ide
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@114#, i.e., by allowing the shape and the size of the perio
box ~described by additional degrees of freedom! to change
in such a way that, at equilibrium, the~average! box fits the
equilibrium unit cell corresponding to the conditions studie
In such simulations, which can be performed in the fram
work of various generalizations of the constant pressure
semble @45,101,102,109,114,115#, it is convenient to de-
scribe the periodic box by the box matrixh whose columns
are formed by the components of the vectors describing
periodic box @115#. To avoid rotations of the system, th
number of the components of the box matrix should be eq
to the number of the independent components of the st
tensor,D(D11)/2. One of the possibilities to fulfill this
requirement is to put some restrictions on possible directi
of the box edges@110#. Another possibility, adopted in the
present paper as more convenient for calculations, is to k
the box matrix symmetric during the simulations@116#.

Denoting the matrix of the reference state byH[hre f
@which is taken as the average~equilibrium! box matrixh at
the pressurep], one can write the strain tensor in the form

«[«~h,H!5~H21"h"h"H212I !/2, ~11!

where the matrixh is assumed to be symmetric~which im-
plies thatH is also symmetric!, H21 is the matrix inverse of
the reference box matrix, andI is the unit matrix of dimen-
sionality D. The volume of the box is equal to the absolu
value of the determinant of the box matrix,

V~«!5udet~h!u. ~12!

The configurational partition function ofN particles,
which are closed in a periodic boxV(«) obtained by a de-
formation ~described by the strain«) of the reference box,
Vp[Vre f5V(0), can be written as

Z@V~«!#5expS 2
F@V~«!#

kT D
5

1

N! EV(«)
dr(N)E dV(N) expS 2

U

kTD , ~13!

wherer i ,Vi ( i 51, . . . ,N) denote the particle positions an
orientations,U is the interaction energy,k is the Boltzmann
constant,T is the temperature, andF@V(«)# is the free en-
ergy of the system at the strain«.

For further considerations it is convenient to define t
following partition function:

Z5E d«D(D11)/2expF2
pV~«!

kT GZ@V~«!#, ~14!

where the integration over the strain tensor concerns al
D(D11)/2 independent components. Using Eqs.~13! and
~3! one obtains
1-3
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Z5E d«D(D11)/2expF2
pV~«!1F@V~«!#

kT G
5E d«D(D11)/2exp@2G@V~«!#/kT#

5exp@2G@V~0!#/kT#E d«D(D11)/2

3expF2
Vp

2kT (
i jkl

D

Bi jkl « i j «klG , ~15!

where the last equality is correct for stable reference st
@described by positive definite quadratic form~4!# when the
system is large enough, i.e., when the strain fluctuations
small.

The following relation comes from Eqs.~15! and ~7!:

^« i j «kl&5
kTSi jkl

Vp
, ~16!

where

^ f &[
E d«D(D11)/2f exp$2G@V~«!#/kT%

E d«D(D11)/2exp$2G@V~«!#/kT%

~17!

denotes the thermodynamic averaging of a functionf with
the partition function~14!. In particular, the average~equi-
librium! volume at the pressurep is calculated as

Vp5^udet~h!u&. ~18!

It is worth to add that the compressibilityKT
52(1/Vp)(]V/]p)T , can be obtained from the equation
03612
es

re

^~DV!2&[
E d«D(D11)/2~DV!2 exp$2G@V~«!#/kT%

E d«D(D11)/2exp$2G@V~«!#/kT%

5kTVpKT . ~19!

C. Determination of the thermodynamic averages

The strain tensor is defined with respect to the refere
state which corresponds to the equilibrium state of the s
tem at the given pressure. Since, in general, the equilibr
state is not known in advance~i.e., before the simulation!,
one might think that to calculate the thermodynamic av
ages of the form~17! which depend on the strain compo
nents, it is necessary to perform an initial run to determ
the reference state.~Moreover, as the reference state must
determined very accurately, the initial run would not be co
putationally cheap.! The present, constant pressure meth
does not require, however, any extra initial run to determ
the reference state. This is illustrated below for a tw
dimensional system.~The three-dimensional case is di
cussed in detail elsewhere@117#.!

The integrals over the strain components can be conve
into integrals over independent components of the box m
trix. Using the formula~11! and denoting the Jacobian of th
transformation (hxx ,hyy ,hxy)→(«xx ,«yy ,«xy) by j (h,H),
one can express the average~with respect to«) in Eq. ~17!
by the ratio of the averages with respect toh:

^ f &5^ f j ~h,H!&h /^ j ~h,H!&h , ~20!

where, forf [ f „s(N),V(N),«(h,H)… being any~smooth! func-
tion of the configuration of a two-dimensional system, t
averageŝ •••&h are defined as
n

e
ic
^ f &h[
E dhxxE dhyyE dhxyV

NE ds(N)E dV(N) f ~s(N),V(N),h,H!exp@2~U1pV!/kT#

E dhxxE dhyyE dhxyV
NE ds(N)E dV(N) exp@2~U1pV!/kT#

. ~21!

To eliminate the strain from the boundary dependences of the integrals in Eq.~21!, the ‘‘normalized’’~scaled to a unit square!
positions of the particles,si5h21r i ( i 51, . . . ,N), are used; the box matrixh is symmetric. For the symmetric box matrix i
two dimensions the Jacobian

j ~h,H![
]~«xx ,«yy ,«xy!

]~hxx ,hyy ,hxy!

5
~hxx1hyy!~hxy

2 2hxxhyy!

2~Hxy
2 2HxxHyy!

3

5 j h~h! j H~H! ~22!

is a product of a function that depends only on the components of the box matrixh and a function that depends only on th
components of the reference box matrixH, which can be thought of as~unknown! constants. Thus, the thermodynam
average of the functionf can be written as
1-4
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h h h h E dhxxE dhyyE dhxyE ds(N)E dV(N) exp~2Gmicro /kT!
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where the ‘‘microscopic free enthalpy’’

Gmicro5kT@~N11!ln V1 ln Tr~h!#2U1pV, ~24!

doesnot depend on the reference system.
Equation~23! states that at isotropic pressure the Mon

Carlo simulation can be performedwithout knowing the
structural parameters~i.e., the reference state! of the system
at equilibrium in advance~i.e., before performing the simu
lation run in which the elastic properties of the system
computed!. This is in contrast to the general case of an a
isotropic stress when the microscopic enthalpy is an exp
function of the strain and when one has to know the re
ence statebeforethe simulations.

The simplest scheme to determineSi jkl in Eq. ~16! is to
store during the simulations the values of the box ma
componentshi j in a file. After finishing the run, the store
data can be used to compute the average~equilibrium! values
of the components of the box matrix,^hi j &5(hre f) i j [Hi j ,
by substitutingf 5hi j in Eq. ~23!. The calculated equilibrium
~reference! values can then be used to compute the str
tensor components« i j which, in turn, makes possible calcu
lation of the elastic compliances according to Eq.~20!.

Remark. It is worth to add that the method used in th
present workdoes notrequire creating any file in which th
data are stored. Namely, it follows from Eqs.~11!, ~16!, and
~18! that to obtain the compliances it is enough to avera
during the simulations a few monomials consisting of t
box matrix components of powers not exceeding 4@117#.
The average values of these monomials~including the aver-
age values of the box matrix components which define
reference state! can be substituted in the formula~16! at the
end of the run that gives the elastic compliances. Howe
creation of a file with the ‘‘history’’ of the box evolution no
only offers a simple and convenient scheme for determ
tion of the compliancesSi jkl , but also helps to estimate th
equilibration ‘‘time’’ and the statistical errors of the resul
obtained.

D. Details of the simulations

In the MC simulations discussed in this paper two kin
of trial moves were performed. The first concerned~simulta-
neous! changes of the molecular mass center position and
molecular orientation; the acceptance ratio was kept clos
30%. The maximal amplitudes of the allowed changes of
translational degrees of freedom and the rotational one~in
radians! were the same.~Other choices, e.g., based on equ
ity of average kinetic energies of translational and rotatio
degrees of freedom@110# give the same results, within th
experimental error.! The second kind of moves, tried abo
N1/2 times less frequently, concerned changes of the com
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nents of the symmetric box matrix only; the orientationsVi

and the scaled positionssi of the particles were not changed
These moves determined the size and the shape of the
and their acceptance ratio was close to 20%.

It is well known that the anisotropy of the periodic bo
can modify~even qualitatively, see, e.g., Refs.@118,119#! the
thermodynamic properties of the studied system. To m
mize the influence of the box anisotropy, samples of sha
close to the square have been used. The simulations o
pentamers and theA andB structures of the heptamers we
carried out for samples being consecutive quadruplings
minimum sample, which consisted of eight horizontal ro
parallel to thex axis, each row composed of seven mo
ecules. This determined the sizes of the studied systemN
556,224,896. As theC structure of the heptamers cannot
arranged in a 837 periodic lattice, only samples ofN
5224,896 heptamers were simulated in this case. Additi
ally, simulations ofN536,144,576 were performed for theC
structure. In this case, the minimum sample consisted of
horizontal rows parallel to thex axis, each row composed o
six molecules. Typical lengths of the runs were equal
33106 trial steps per particle~cycles! for N536, 53106

cycles forN556,144, 107 cycles forN5224, and 23107

for N5576,896. Some longer runs were also performed
compare different random number generators and to ch
the convergence of the method. Up to 10% of the typi
simulation length was considered as the equilibration ti
and was not taken into account in the averaging procedu
This can be thought of as using large ‘‘safety’’ margin b
cause the analysis of the evolution of the box matrix com
nents as well as the particle positions and orientations di
butions indicated that the equilibrium was reached for tim
at least one order of magnitude smaller.

III. HIGH DENSITY STRUCTURES OF THE PENTAMERS
AND THE HEPTAMERS

Various structures of the pentamers and heptamers h
been found in computer simulations@53–58#. The simula-
tions proved that in both cases there exist the fluid phase
some solid phases which represent various orientationa
derings, e.g.,~almost! free rotation,~strongly! hindered rota-
tion, and frozen rotation@54,56–58#. The latter ordering was
observed at the highest densities which are the subject o
present work; at these densities the molecules in both
tems only vibrate around their lattice positions and libra
around their preferred orientations.

In the system of the pentamers, only one structure with
molecular rotation has been found@53,54,56#. This structure
contains two pentamers in itsrectangular unit cell and its
geometry at close packing can be seen in Fig. 2~a!; see also
1-5
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Table I. The ‘‘row structure’’ shown in Fig. 2~a! consists of
rows of closely packed pentamers. The rows are paralle
the x axis, and the molecules in the consecutive rows
antiparallel to each other.

In contrast to pentamers, the heptamers form~at least!
three different ~thermodynamically stable or metastabl!
structures without molecular rotation at the highest densi
@55,58#. All these structures, shown in Figs. 2~b!–2~d!, are of
rectangular unit cells. The structures in Figs. 2~b! and 2~c!
are similar to the structure formed by the pentamers,
they differ from each other by the relative positions of t
rows. One of them, denoted byB, was obtained by a slow
compression of the system from the lower density, orien
tionally disordered, phase of the triangular lattice. The clo
packed version of this structure can be seen in Fig. 2~b!. It is
interesting to notice that the structureB is not the most dense
structure which can be obtained by packing rows of
closely packed heptamers of the same orientation withi
row; see Table I. In Fig. 2~c! one can see a structure, furth
referred to asA, which is the most dense of such row stru
tures@58#. The structuresA andB have two heptamers in th
unit cell. Obviously, at densities high enough~i.e., when the
pressurep tends to infinity!, the structureA must be more
stable thanB. The structureA is, however, not the most dens
structure of the heptamers. Even more dense structure o
heptamers, further referred to as theC structure, is shown in
Fig. 2~d!. The structureC is the most dense structure of th
heptamers we know and its unit cell contains four molecu
that are not oriented along the horizontal molecular ‘‘row
see Table I. Obviously, in the limit ofp→` this structure
must be more stable than the structureA.

FIG. 2. The close-packed structures in the~a! pentamer and
~b!–~d! heptamer systems. The unit cell for each of these struct
is rectangular. In the case of the heptamers they are further refe
to as~b! theB structure,~c! theA structure~which is denser than the
B structure at close packing!, ~d! theC structure~which is the most
dense structure of the known heptamer structures at close pac
@55,58#!. The molecular orientationsf are indicated in this figure
by line intervals of orientations 5f for pentamers and 7f for hep-
tamers.
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It is worth noticing that none of the latter two structur
(A and C) was obtained by either a spontaneous transit
from the structureB or by compressing any other phase. Th
is despite that~i! at close packing both these structures a
denser thanB and ~as it can be seen in Fig. 3,! ~ii ! their
iotherms are located below the isotherm corresponding to

TABLE I. Parameters of the studied structures at close pack
see Fig. 2; the distances are given in units ofs. The molecule 0 is
always placed at the origin of the coordinate system, i.e., for e
structurex05y050. The two-dimensional volume~i.e., the area!
per particle of the considered structure at close packing is equ
acp

(structure)bcp
(structure)/nu , where nu52 for structuresP,A,B and

nu54 for the structureC.

PentamersP
acp

(P)52.4048671732 bcp
(P)54.2360679772 f050

x151.0131106571 y15bcp
(P)/2 f15p/5

HeptamersA
acp

(A)53.0566685376 bcp
(A)55.5150210832 f050

x151.9144263193 y15bcp
(A)/2 f15p/7

HeptamersB
acp

(B)53.0566685376 bcp
(B)55.5382990167 f050

x151.3656999121 y15bcp
(B)/2 f15p/7

HeptamersC
acp

(C)56.0309063912 x251.2832327269
bcp

(C)55.5371391576 y252.7685695788
f050.2843960475 f250.1644029030
x153.0154531956 x354.2986859225
y150.1230590461 y352.8916286250
f152f0 f352f2

FIG. 3. The isotherms of dense solid structures for the hepta
system.V is the two-dimensional volume~i.e., the area! of the sys-
tem, andVcp

(C) denotes its value for the structureC at close packing;
p* is the dimensionless pressure defined in Table III. It can be s
that the isotherm corresponding to theB structure is located above
the isotherm of theA structure, which, in turn, is located above th
isotherm of theC structure@55,58#.
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ELASTIC PROPERTIES OF DENSE SOLID PHASES OF . . . PHYSICAL REVIEW E67, 036121 ~2003!
latter one in the whole density range where they are m
chanically stable. This indicates that the local minima of
free energy corresponding to the solid structures of hept
ers are very deep. In consequence, the time necessar
occurrence of any structural transition in the heptamer s
tem at high densities is much longer than the times of
simulations performed for the studied sizes of the samp
This allows one for the determination of the elastic prop
ties of the studied structures for a whole range of high pr
sures despite that at a randomly chosen pressure in this r
we know with probability equal to unity that only one o

TABLE II. The equation of state and the unit cell paramete
~extrapolated to the thermodynamic limit! of the studied structures
of the pentamers and the heptamers. The parameters are defin
follows: v (structure)* 5V/Vcp

(structure) , a(structure)* 5a/acp
(structure) ,

b(structure)* 5b/bcp
(structure) , xi* 5(xi2x0)/acp

(structure) , yi* 5(yi

2y0)/bcp
(structure) , whereV is the ~two-dimensional! volume ~i.e.,

the area! of the system,a,b are the sides of the~rectangular! unit
cell, Vcp

(structure) ,acp
(structure) ,bcp

(structure) denote the close-packin
limits of V,a,b for structuresP,A,B,C, andxi ,yi ,f i are the aver-
age coordinates and orientations of thei th molecule of the unit cell
~see Fig. 2!. For the first three structures, the values ofy1* ,f0 ,f1

are not shown because they are, respectively, equal toa* /2,0,p/n
~where n55 for pentamers andn57 for heptamers! within the
experimental error.

p* 15 50 150 500

PentamersP
v (P)* 1.04092~6! 1.01196~1! 1.003945~6! 1.001178~4!

a(P)* 1.03437~8! 1.00934~2! 1.003018~6! 1.000985~4!

b(P)* 1.00634~5! 1.002594~7! 1.000923~4! 1.000283~3!

x1* 0.44276~3! 0.426830~7! 0.423043~4! 0.421886~3!

HeptamersA
v (A)* 1.02474~3! 1.007188~8! 1.002377~8! 1.000712~3!

a(A)* 1.01199~1! 1.003485~5! 1.001152~5! 1.000345~2!

b(A)* 1.01261~2! 1.003664~5! 1.001212~4! 1.000363~2!

x1* 0.62582~3! 0.626170~7! 0.626265~4! 0.626298~2!

HeptamersB
v (B)* 1.02583~3! 1.007217~8! 1.002375~5! 1.000710~4!

a(B)* 1.01993~3! 1.005569~7! 1.001832~4! 1.000547~3!

b(B)* 1.00580~2! 1.001620~4! 1.000536~2! 1.000160~2!

x1* 0.46423~4! 0.451666~6! 0.448396~3! 0.447272~3!

HeptamersC
v (C)* 1.02470~5! 1.00724~3! 1.002402~3! 1.0007193~9!

a(C)* 1.01410~4! 1.00413~2! 1.001371~2! 1.0004104~6!

b(C)* 1.01047~2! 1.00307~2! 1.001018~2! 1.0003049~4!

f0 0.28437~4! 0.28439~3! 0.284393~2! 0.284395~1!

x1 0.50704~2! 0.50206~1! 0.500684~1! 0.5002049~4!

y1 0.02368~2! 0.022650~9! 0.022366~1! 0.0222666~3!

f1 20.28437~5! 20.28439~3! 20.284393~3! 20.284395~1!

x2 0.21694~2! 0.213997~8! 0.213181~1! 0.2128973~3!

y2 0.50523~2! 0.501534~8! 0.500509~1! 0.5001524~3!

f2 0.16443~4! 0.16441~3! 0.164405~2! 0.164403~2!

x3 0.72399~3! 0.71606~2! 0.713867~2! 0.7131026~5!

y3 0.52891~3! 0.52419~2! 0.522875~2! 0.5224191~4!

f3 20.16443~5! 20.16441~3! 20.164405~2! 20.164403~2!
03612
-
e

-
for
s-
e
s.
-
s-
ge

these structures can be thermodynamically stable.
The unit cell parameters of the studied solids at clo

packing~i.e., in the limit of infinite pressure! are collected in
Table I. The corresponding parameters at a few finite pr
sures are shown in Table II.

IV. ELASTIC PROPERTIES

As it was mentioned in the Introduction, no defects we
present in the structures studied in this work. Defects a
however, unavoidable at densities below the close packin
the thermodynamic limit. Thus, in this context, as well as
the context of the well known problem concerning the la
of any true translational ordering in two dimensions@59,60#,
the obtained elastic constants and compliances can
thought of as describing local elastic properties of the stud
systems.

A. Simulation results

In Tables III–VI the dimensionless elastic complianc
Si jkl* [Si jkl s

2/kT obtained for the pentamers and the he
tamers are collected.~We do not show the compliances
Sxxxy* ,Sxyyy* which have to be zero by the symmetry requir
ments.! It can be seen that the elastic compliances obtai
for systems as small asN556 particles differ by only a few
percent from the estimates obtained for the thermodyna
limit N→`. The same is true for the Poisson ratios whi
can be obtained from the compliances by Eq.~10!.

It is worth noticing that theSxxyy* compliances are nega
tive for the rectangular structure of the pentamers and thB
structure of the heptamers. Such a behavior is typical
materials existing in nature and it implies that the Poiss
ratios of these structures are positive. In contrast to them,
remaining~more dense! structures of the heptamers exhib

d as

TABLE III. The dimensionless elastic compliances of the pe
tamer system in the rectangular solid phase. The dimension
pressure is defined asp* 5ps2/kT.

N p* Sxxxx* Syyyy* Sxxyy* Sxyxy*

56 15 437(11)/105 280(5)/105 2231(7)/105 152(4)/105

224 15 432(9)/105 278(7)/105 2231(5)/105 159(5)/105

896 15 429(11)/105 270(7)/105 2225(8)/105 158(5)/105

` 15 429(10)/105 272(7)/105 2227(7)/105 160(5)/105

56 50 341(12)/106 186(3)/106 2145(6)/106 924(17)/107

224 50 339(11)/106 183(4)/106 2140(6)/106 928(15)/107

896 50 345(5)/106 176(2)/106 2134(2)/106 920(12)/107

` 50 343(7)/106 178(3)/106 2135(3)/106 923(13)/107

56 150 333(5)/107 185(2)/107 2127(2)/107 941(9)/108

224 150 331(5)/107 179(3)/107 2120(2)/107 956(10)/108

896 150 327(6)/107 179(3)/107 2118(3)/107 929(16)/108

` 150 328(6)/107 178(3)/107 2118(3)/107 940(14)/108

56 500 290(6)/108 162(2)/108 2109(3)/108 828(12)/109

224 500 278(3)/108 160(2)/108 2105(2)/108 819(11)/109

896 500 283(5)/108 162(2)/108 2104(3)/108 818(16)/109

` 500 279(4)/108 161(2)/108 2104(3)/108 817(14)/109
1-7
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positive compliancesSxxyy* , i.e., negative Poisson ratios.
Thus, theA and C structures are very simple examples
anisotropic auxetic phases. The possibility that some nonc
vex molecules may form auxetic phases has been pointed
by one of the authors in the past@69,70#.

Part of the results presented in Tables II –VI was obtain
by using a few Hewlett-Packard~HP! workstations. It ap-
pears that the simulations on these workstations can
speeded up substantially~almost twice! when the~pseudo!
random numbers are generated by using the SNWS gene
proposed by Holianet al. @120#, which is based on the

TABLE IV. The dimensionless elastic compliances of the he
tamer system in the A phase. The symbols are the same as in
III.

N p* Sxxxx* Syyyy* Sxxyy* Sxyxy*

56 15 699(15)/106 746(13)/106 149(9)/106 201(7)/105

224 15 682(10)/106 721(11)/106 160(7)/106 180(2)/105

896 15 682(11)/106 706(9)/106 161(13)/106 180(2)/105

` 15 679(10)/106 707(9)/106 163(10)/106 178(1)/105

56 50 571(5)/107 615(6)/107 124(7)/107 114(2)/106

224 50 570(6)/107 620(12)/107 139(5)/107 115(2)/106

896 50 567(7)/107 601(11)/107 125(6)/107 109(2)/106

` 50 568(7)/107 608(12)/107 128(6)/107 110(2)/106

56 150 635(7)/108 696(7)/108 143(7)/108 1170(14)/108

224 150 624(7)/108 690(12)/108 146(7)/108 1136(12)/108

896 150 617(7)/108 664(11)/108 131(9)/108 1149(13)/108

` 150 618(7)/108 671(12)/108 137(8)/108 1139(12)/108

56 500 568(5)/109 619(5)/109 119(5)/109 1016(10)/109

224 500 554(6)/109 599(9)/109 128(4)/109 1009(10)/109

896 500 567(7)/109 588(6)/109 122(6)/109 998(12)/109

` 500 560(10)/109 590(10)/109 126(5)/109 1000(12)/109

TABLE V. The dimensionless elastic compliances of t
heptamer system in theB phase. The symbols are the same as
Table III.

N p* Sxxxx* Syyyy* Sxxyy* Sxyxy*

56 15 223(3)/105 892(19)/106 2631(18)/106 118(2)/105

224 15 219(4)/105 861(7)/106 2606(12)/106 114(2)/105

896 15 217(7)/105 848(11)/106 2622(22)/106 113(2)/105

` 15 217(6)/105 847(8)/106 2612(18)/106 113(2)/105

56 50 129(2)/106 607(8)/107 2216(8)/107 777(5)/107

224 50 126(2)/106 584(5)/107 2200(9)/107 768(13)/107

896 50 125(2)/106 577(5)/107 2196(10)/107 731(12)/107

` 50 125(2)/106 576(5)/107 2195(11)/107 747(6)/107

56 150 133(2)/107 650(6)/108 2195(10)/108 826(9)/108

224 150 133(1)/107 636(4)/108 2183(10)/108 799(7)/108

896 150 132(2)/107 641(9)/108 2188(12)/108 807(11)/108

` 150 132(2)/107 637(7)/108 2184(11)/108 800(9)/108

56 500 117(2)/108 580(6)/109 2158(8)/109 714(7)/109

224 500 117(2)/108 572(6)/109 2157(6)/109 687(9)/109

896 500 116(2)/108 581(9)/109 2155(9)/109 685(9)/109

` 500 116(2)/108 576(8)/109 2156(8)/109 681(9)/109
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Weyl sequence. This generator, which is also convenien
use for parallel computations, has already been tested b
in the case of free energy computations for the fcc and
crystals of hard spheres@121#. Most of the runs in the presen
simulations of the elastic constants have been done by u
the SNWS Holian’s generator and its simple modificatio
@122#. In Fig. 4, representative examples of the accumulat
plots are shown for the elastic compliances and thexy and
yx Poisson ratios calculated for the rectangular structure
the pentamers by using two random number generat
DRAND48 and the SNWS Holian’s generator. It can be se
that the results obtained for both the generators agree w
the experimental error. This encourages one to use the
lian’s SNWS generator in other Monte Carlo~MC! simula-
tions.

Looking at Fig. 4 one can also estimate the converge
of the computed data. As expected@45,108#, the convergence
of the simulation results in the case of the elastic proper
is much slower than, e.g., in the case of the equation of st
The slow convergence of the fluctuation method is also ill
trated in Fig. 5 where one can see the accumulation plot
the elastic properties obtained forN5896 pentamers for a
run consisting of 4.23107 MC cycles.

It is well known that the real time of simulations usin
any computational method can be reduced if the method
be parallelized. Since the present method does not requi
know the reference state prior to simulations it can be fu

-
ble

TABLE VI. The dimensionless elastic compliances of th
heptamer system in theC phase. The symbols are the same as
Table III.

N p* Sxxxx* Syyyy* Sxxyy* Sxyxy*

36 15 981(18)/106 661(11)/106 44(10)/106 774(10)/106

144 15 964(25)/106 663(15)/106 63(10)/106 744(13)/106

224 15 920(8)/106 649(4)/106 52(8)/106 736(8)/106

576 15 928(15)/106 645(6)/106 49(9)/106 744(7)/106

896 15 928(16)/106 658(12)/106 47(9)/106 729(14)/106

` 15 927(15)/106 652(11)/106 53(8)/106 733(11)/106

36 50 785(6)/107 594(4)/107 51(4)/107 600(4)/107

144 50 787(15)/107 576(7)/107 69(6)/107 574(9)/107

224 50 766(7)/107 565(6)/107 67(7)/107 567(5)/107

576 50 741(12)/107 562(7)/107 57(6)/107 581(5)/107

896 50 751(13)/107 575(6)/107 58(8)/107 590(12)/107

` 50 755(13)/107 566(7)/107 63(8)/107 576(9)/107

36 150 834(6)/108 643(7)/108 56(5)/108 631(6)/108

144 150 813(26)/108 627(14)/108 70(8)/108 617(12)/108

224 150 830(10)/108 650(10)/108 78(5)/108 616(7)/108

576 150 819(11)/108 625(8)/108 74(5)/108 624(7)/108

896 150 830(10)/108 620(10)/108 51(7)/108 609(10)/108

` 150 822(15)/108 628(11)/108 60(7)/108 614(10)/108

36 500 770(12)/109 579(13)/109 65(5)/109 558(6)/109

144 500 736(10)/109 559(10)/109 68(8)/109 543(5)/109

224 500 754(12)/109 558(8)/109 62(4)/109 552(6)/109

576 500 749(6)/109 573(5)/109 67(4)/109 561(5)/109

896 500 751(9)/109 565(9)/109 60(9)/109 562(7)/109

` 500 745(9)/109 562(8)/109 64(7)/109 566(7)/109
1-8
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FIG. 4. An example of the ac-
cumulation plots of~a!–~d! the di-
mensionless elastic compliance
and ~e!, ~f! the Poisson ratios ob
tained forN556 pentamers in the
rectangular phase atp* 550 simu-
lated by using two different ran-
dom number generator
DRAND48 ~full symbols! and
SNWS ~open symbols!.
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parallelized and easily implemented on a parallel compu
In Table VII, we collected the results obtained for the elas
constants for three runs of the same length 43107 MC
cycles~after equilibration!. The first run~a! was performed
by a single processor starting from a perfectly ordered r
angular structure; the initial 53105 cycles were spent fo
equilibration. The other two runs were performed paralle
by 16 processors. In the case~b! the starting configurations
corresponded to the configurations obtained within the fi
run after (41m)3105 MC cycles wherem51, . . . ,16 is the
processor number; the sequences of random numbers
different in each case. No equilibration cycles were p
03612
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formed in this case. In the case~c! all the initial configura-
tions were the same as the initial configuration in the case~a!
but the sequences of the random numbers were differ
53105 equilibration cycles were performed in each of the
runs. It can be seen that the obtained results are in agree
within the combined statistical errors.

B. Free volume approximation

Some properties of the hard-core systems, such as p
sure or elastic constants, are divergent in the close-pac
limit. Other quantities, such as compliances, tend to zero
1-9
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this limit. In general, to analyze numerically quantities whi
diverge or tend to zero, it is meaningful to rescale them
their asymptotics obtained from a theoretical research. In
particular case of the hard-core systems the asymptotics
offered by the free volume approximation@15,26,123–129#.

The essence of the free volume approach consists in
observation that in the condensed matter phases the
ecules can be thought of as moving in shells formed by th

FIG. 5. The accumulation plots of~a! the dimensionless elasti
compliances and~b! the Poisson ratios obtained forN5896 pen-
tamers in the rectangular phase atp* 550.

TABLE VII. Comparison of results obtained forN556 penta-
mers at the dimensionless pressurep* 550: ~a! a single long run,
~b! 16 parallel runs initialized from various structures generated
the long run,~c! for 16 parallel runs initialized from a periodi
lattice obtained by uniform scaling of the close-packed structu
Details of the runs are discussed in the text.

run Sxxxx* Syyyy* Sxxyy* Sxyxy*

~a! 3365(15)/107 1835(8)/107 21385(7)/107 960(7)/107

~b! 3363(16)/107 1823(7)/107 21385(9)/107 947(6)/107

~c! 3328(22)/107 1835(6)/107 21370(8)/107 953(6)/107
03612
y
e
re

he
ol-
ir

nearest neighbors. This approximation can be proven to g
asymptotically exact results for the equation of state of h
spheres~or hard discs! in the close-packing limit@124#. It is
well known that at high densities the equation of state
some other hard-body systems is also well approximated
the free volume theory@23,128,130#. The free volume also
predicts correctly the asymptotic form of the elastic co
stants of hard spheres and discs@35,38,45,46#. It will be
shown below that the free volume approximation works a
well in the case of the studied phases of pentamers and
tamers.

It has been shown in Ref.@124# that for the
D-dimensional hard spheres of the diameters, the free vol-
ume v (FV) near the close packing is proportional to thegth
power (g being the number of the molecular degrees of fre
dom, i.e.,g52 for hard discs andg53 for hard spheres! of
the excess distanced5a2s between the centers of th
neighboring spheres at their lattice site positions~which are
distanced bya) @124#,

v (FV)5c~d!g, ~25!

where

d/s[d* 5~V/Vcp!
1/D21, ~26!

V is the volume of the system,Vcp is the volume of the
considered structure at close packing, andc depends on the
shape of the free volume. Applying this formula to anis
tropic hard bodies and assuming that near close packinc
does not depend on the volume per particle~which means
that the free volume does not change its shape when
volume of the system is changed by isotropic pressure! one
can neglect the constantc and write the configurational free
energy per one ‘‘molecule’’~body! in the form

f (FV)52kT ln v (FV)52gkT ln@~V/Vcp!
1/D21#. ~27!

This leads to the following equations for the pressure and
bulk modulus:

p(FV)52
] f

]~V/N!
5

gNkT

DV S 11
1

d* D , ~28!

BT
(FV)52V

]p

]V
51/KT

(FV)

5
gNkT

DV
S 11

11
1

D

d*
1

1

D

~d* !2
D , ~29!

whered* is defined in Eq.~26!.
As it is easy to see, the pressure shows singularity of

form (d* )21 whereas the leading singularity of the bu
modulus is of the form (d* )22. The elastic constants ar
expected to show the same~leading! singularity as the bulk
modulus@35#.

In Fig. 6 we show that the free volume approximatio
works well both in the case of pentamers and heptamers
which D52 andg53. It can be seen there that the ratios

n

.

1-10
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FIG. 6. The experimental data obtained for the pentamers~open circles! and the heptamers~the phasesA, B, andC are represented by
diamonds, squares, and crosses, respectively! divided by their asymptotics obtained in frames of the free volume approximation for~a! the
pressure and~b! the bulk modulus, and by the free volume estimate of the bulk modulus for~c!–~f!, the elastic constants. The elast
constantsCi jkl were calculated by the formulas~7! and ~4!. In ~g! and ~h!, we show the Poisson ratios obtained from Eq.~10!.
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the elastic constants to the bulk modulus obtained from
free volume approximation are well approximated by line
functions of the inverse density. In particular, as predicted
the free volume theory, the ratiosp/p(FV) andBT /BT

(FV) tend
to unity at close packing. In the first case the accuracy of
experimental determination of this limit is much high
~close to one promile! than in the second case~about 2%!.

The ordinates of the~linear! fits shown in Fig. 6 at vol-
umes corresponding to close packings of the studied st
tures characterize quantitatively the singular behavior in
vicinity of close packings of studied structures. The obtain
coefficients and directional Poisson ratios are collected
Table VIII. It can be seen that some of the values of dir
tional Poisson ratios are negative.
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V. SUMMARY AND CONCLUSIONS

Elastic properties of dense solid structures for pentam
and heptamers were determined by analysis of the box
trix evolution in Monte Carlo simulations. It has been show
that simulations of systems as small asN556 give results
that differ by only a few percent from the results obtained
extrapolation to the thermodynamic limit.

The asymptotics of the obtained equation of state, b
modulus, and elastic constants are in agreement with pre
tions of a simple version of the free volume theory. T
coefficients of the leading singularities of pressure and e
tic constants in the vicinity of the close packing have be
determined. These coefficients can be useful to construct
to test various theoretical approximations concerning elas
1-11
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ity of molecular systems.
We should note that the computations performed sh

that the Poisson ratios of the most dense structures of
tamers are negative. This result confirms earlier suggest
that certain nonconvex molecules may form phases
anomalous Poisson ratio@70#. We should stress that the he
tamers are not an exception in this aspect; analytical
computer simulation results concerning other molecu
forming thermodynamically stableauxetic phases will be
discussed elsewhere.

It is worth to add that the simulation method applied
this paper does not require using the structural parame

TABLE VIII. The extrapolated values of the rescaled~by the
free volume bulk modulus! elastic constants and directional Poiss
ratios in the close-packing limit for the pentamers and heptam
The errors are between 2% and 4%.P denotes the pentamers
whereasA, B, andC denote the studied phases of the heptamer
is worth noticing thatCxxyy is negative for the structuresA andC.
This implies negative values of the directional Poisson ratios sh
in the last two rows.

P A B C

Cxxxx/BT
FV 1.065 2.697 1.284 1.983

Cyyyy/BT
FV 1.953 2.510 2.596 2.594

Cxxyy/BT
FV 0.695 20.565 0.320 20.208

Cxyxy/BT
FV 0.731 0.360 0.517 0.648

nxy 0.352 20.222 0.123 20.084
nyx 0.660 20.207 0.239 20.109
v.

.

ys

s

03612
w
p-
ns
f

d
s

rs

~reference state! of the unit cell of the studied system as
simulation input. The reference~equilibrium! state is deter-
mined within the same run in which the elastic properties
determined. This saves a substantial amount of the sim
tion time. This also allows one to increase the accuracy
the results by extending the length of the simulations sim
by continuing them from the place in which they we
stopped.

Although the applied method of elastic properties det
mination does not converge as quickly as methods us
other thermodynamic ensembles~e.g., theN-V-T ensemble!,
its simplicity ~there is no need to apply microscopic expre
sions for the pressure or its derivatives! and possibility to
calculateall the elastic constants in asingle run encourage
one for applying it in various systems. In particular, th
method seems to be preferable in situations where one n
easy and quick estimates of the elastic properties for syst
with complex~e.g., molecular! interactions for which calcu-
lations of the forces are either time consuming or nontriv
This is, e.g., the case of some systems forming isotro
auxetic phases which are the subject of separate works.
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@108# T. Çagin and J.R. Ray, Phys. Rev. B38, 7940~1988!.
@109# Z. Zhou, J. Chem. Phys.114, 8769~2001!.
@110# K.W. Wojciechowski, A.C. Bran´ka, and M. Parrinello, Mol.

Phys.53, 1541~1984!.
@111# D. Frenkel and A.J.C. Ladd, J. Chem. Phys.18, 3188~1984!.
@112# D.C. Wallace, Thermodynamics of Crystals~Wiley, New

York, 1972!.
@113# J.H. Weiner,Statistical Mechanics of Elasticity~Wiley, New

York, 1983!.
@114# M. Parrinello and A. Rahman, Phys. Rev. Lett.45, 1196

~1980!.
@115# M. Parrinello and A. Rahman, J. Appl. Phys.52, 7182~1981!.
@116# S. Nose´ and M.L. Klein, Mol. Phys.50, 1055~1983!.
@117# K. W. Wojciechowski~unpublished!.
@118# K.W. Wojciechowski, P. Pieran´ski, and J. Mal”ecki, J. Chem.

Phys.76, 6170~1982!.
03612
@119# K.W. Wojciechowski, P. Pieran´ski, and J. Mal”ecki, J. Phys. A
16, 2197~1983!.

@120# B.L. Holian, O.E. Percus, T.T. Warnock, and P.A. Whitloc
Phys. Rev. E50, 1607~1994!.

@121# K.V. Tretiakov and K.W. Wojciechowski, Phys. Rev. E60,
7626 ~1999!.

@122# K.W. Wojciechowski, Comput. Meth. Sci. Technol.5, 81
~1999!.

@123# J.A. Barker,Lattice Theories of the Liquid State~Pergamon,
Oxford, 1963!.

@124# F.H. Stillinger, E.A. DiMarzio, and R.L. Kornegay, J. Chem
Phys.40, 1564~1964!.

@125# W.G. Hoover, W.T. Ashurst, and R. Grover, J. Chem. Ph
57, 1259~1972!.

@126# W.G. Hoover, N.E. Hoover, and K. Henson, J. Chem. Ph
70, 1837~1979!.

@127# K.W. Wojciechowski and A.C. Bran´ka, J. Phys. Chem. Solids
45, 913 ~1984!.

@128# M.P. Taylor, R. Hentschke, and J. Herzfeld, Phys. Rev. L
62, 800 ~1989!.

@129# K.W. Wojciechowski, Physica A232, 723 ~1996!.
@130# K.W. Wojciechowski, A.C. Bran´ka, and D. Frenkel, Physica

A 196, 519 ~1993!.
1-14


